
by Russell Ovans, East Side Games April 2024

Game analytics 100: 
The retention curve

Gameanalytics.com



1

Introduction



Preliminary definitions



How GameAnalytics displays retention



The retention curve

Fitting a retention curve in Excel

Constructing a retention curve in 
Tableau from (more) historical data



Predicting DAU with a retention curve



Player duration as the summation of 
the retention curve



Retention benchmarks



Summary

2



3



6



7

8


10




13



17




20



21

Table of contents
Portions of this paper previously appeared in the book Game 
Analytics: Retention and Monetization in Free-to-Play Games. 
Reprinted with permission of Thought Pilots.

https://www.amazon.com/dp/0986941824
https://www.amazon.com/dp/0986941824


2

Retaining customers is the life blood of any business, let alone a 
game studio. Generating new customers is an expensive 
endeavour as it requires outlays of cash on advertising. As such, 
it is generally more economical to keep the customers you have 
than it is to buy new ones. Or, as my Uncle Bob explained to me 
years ago, “Once the customer enters your business, all of your 
effort shifts to selling them one thing: a return visit.”



The topic of this paper is mobile game customer retention: how 
do we quantify and model the rate at which users return to play 
our games? You can only monetize the users you have, so if your 
game doesn’t retain its players, you will struggle to generate 
revenue. Most game analysts are surely familiar with the notion 
of day-n retention; i.e., the proportion of your players who return 
to play exactly n days after they install and play their first 
session. For example, if 100 users install your game on July 1st, 
and 20 of those players return to play on July 8th, then day 7 
retention (D7R) is 0.20. In this paper, we generalize the concept 
of day-n retention with a retention curve, a simple formula to 
model and predict player retention for any day after install. We 
describe how a retention curve is derived from a set of historical 
data, plus two important applications of the curve: predicting 

daily active users (DAU) from a constant number of daily installs; 
and, the summation of this curve is the expected number of 
distinct days a new user will play your game. 

Introduction



3

Data analysts tend not to think too much about individual 
players. Instead, descriptive statistics are drawn from a group of 
players called a cohort. A cohort is a set of players who have 
something in common. Normally, this is their install date, but 
additional attributes can be used to determine membership in a 
cohort. For example, a cohort might consist of all the Android 
players from the US who installed version 1.26.5 on July 1, 2023. 
Cohorts define the players used in the calculation of averages 
and other descriptive statistics that make up key performance 
indicators (KPIs) such as day-n retention.



Retention is a KPI that is modified with a “days since install” 
index, which we denote with the variable n. You never talk about 
retention without specifying a particular day after a cohort’s 
install date, which is indicated by “Dn.” Dn retention (DnR) is the 
proportion – often expressed as a percentage – of a cohort that 
plays exactly n days after their install date: not the day before, 
nor the day after. By definition, D0R is always 1.0 since the 
install date is equivalent to the date of a player’s first session. 
D1R is the proportion of installs who played at any time in the 
calendar date immediately following their install date. The 
higher your retention, the better. For the idle-genre titles 

published by East Side Games, a good D1R is around 40%. For 
D7R, we aim for 20%.

 

Dn retention as a KPI is measured at a standard set of days 
since install, typically for n ∈ {1, 7, 30, 90} . But in general, DnR 
can be measured for any day since install as

where installs is the size of the cohort, and DAUn  is a count of 
the daily active users from the cohort who played on the nth day 
after their install date. Note that DAU0 ≡ installs.



For a cohort to have a value for any Dn retention metric their 
install date must be more than n days ago. For example, we 
can’t calculate D7R for a cohort of installs until eight days after 
their install date, at which point we say the cohort and its users 
are “seven days fully baked.” If a cohort is not fully baked with 
respect to a KPI, the value is null.



A time series is made up of successive measurements – over

Preliminary definitions

DnR=
DAUn

installs



4

consistent intervals – of the same variable. When charted or 
graphed, time is the independent variable and occupies the x-
axis. The x-axis usually refers to a specific date when a game 
was played; e.g., DAU by day. But for other time-series KPIs, the 
x-axis can represent a cohort install date that measures the 
evolving, future behaviour of only those users who installed the 
game on that date. Day-n retention is one such cohort-based 
time series. If we generate a time-series graph of D30 retention, 
the value on July 1st represents the proportion of the installs 
from that date who played on July 31st. The value on July 2nd 
represents the proportion who installed the game that date and 
played on August 1st, and so on. (The presented data is 
representative, and not from any particular game.)

Jul 9 Jul 12 Jul 15 Jul 18 Jul 21 Jul 24 Jul 27 Jul 30

5%

6%

7%

8%

9%



d1r d7r d30r d90r

0.3712 0.1626 0.0787 0.0394

5

Retention is an aggregate measure applied to a group of players. 
But at the individual user level, Dn retention is simply a binary 
variable: the user either played on that day (indicated by the 
value 1), they did not play (indicated by a 0), or if not yet fully 
baked, we don’t know yet (indicated by a null value). Here is 
sample retention data for some random players.

Rather than a time series of daily retention values, a retention 
profile for a game as a whole is constructed by taking a 
weighted average of Dn retention values over multiple install 
cohorts. Given a database table similar to the one above, this is 
trivial to compute with a SQL query, the result set of which might 
appear as follows:

Typically, users are taken from a range of consecutive install 
dates (as specified by a WHERE clause in the SQL) that are at 
least 90 days old to ensure only fully-baked cohorts are included, 
but if not, the nulls are conveniently skipped over and not 
included in the calculation of the average. 

user_id

858993

2630131

8554854

226962

7706121

9025650

3221035

install_date

2017-04-23

2017-06-28

2021-11-19

2017-04-20

2021-02-06

2023-09-28

2017-08-19

d1

0

1

0

1

0

0

1

d7

1

0

0

1

0

0

1

d30

0

0

0

1

0

0

0

d90

0

1

0

0

0

0

0



How GameAnalytics displays retention

6

In GameAnalytics, retention metrics are displayed using cohorts, 
which are groups of players who share common attributes, such 
as install date or specific in-game actions. The retention 
metrics, such as day-n retention (DnR), are calculated based on 
the behavior of these cohorts over time. By default, 
GameAnalytics allows users to view retention metrics via default 
triggers, such as the first session after install.



GameAnalytics Pro users have additional options, including the 
ability to define custom start trigger event conditions and 
custom return trigger event conditions. This allows for more 
granular analysis and customization of retention metrics based 
on specific player actions or behaviors.



Additionally, GameAnalytics provides the possibility to apply 
global filters to easily alter static dimensions like country, 
enabling users to analyze retention metrics across different 
player segments.



By utilizing GameAnalytics, developers can gain insights into 
player retention patterns, identify areas for improvement, and 
optimize their games to enhance player engagement and 
satisfaction.



7

By convention, the days 1, 7, 30, and 90 after install are included 
in a game’s core set of KPIs. But what about all the other days in 
between or after these specific days? We could measure every 
DnR from the cohort data, but is there a closed form function 
that can tell us with reasonable accuracy what Dn retention is 
for any day n? It turns out there is, and this function defines the 
retention curve. The retention curve is a mechanism to fully 
describe a historical retention profile and predict the expected 
number of days each new user will engage with your game 
before churning.



Retention curves are built from a retention profile of observed 
Dn values. Each value is a dot, and the retention curve connects 
the dots. Here is a curve (the green line) fit to observed retention 
values of 0.4, 0.23, and 0.16 at D1, D3, and D7, respectively.



Unlike the time-series graph introduced previously, the x-axis is 
n, representing a discrete day since install. Note how the curve 
predicts retention values well beyond the data points used in its 
construction. The curves that best fit mobile game retention

The retention curve

Day 0 Day 1 Day 3 Day 7

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0



8

b that minimize the residual error between the observations (the 
actual data) and the predictions (the values returned by the 
function). We now consider two tools a data analyst might 
employ in performing this regression: Excel and Tableau.




Assume we have the following observed retention profile for a 
game in soft launch, which we have entered into an Excel 
spreadsheet. The observations are for D1, D3, and D7 retention.

Fitting a retention curve in Excel



What is a power function r(n)=anb that best describes these data 
points? In Excel, we can deploy the LINEST function to fit a line 
or curve to an array of known y- and x-values, where y is the

profiles tend to be real-valued power functions. The generic 
form of a retention power curve r is a function r: ℕ→[0, 1] of 
days since install n:

where a ∈ (0, 1], b ∈ [-1, 0), r(0)=1.0. 



The parameters a and b are referred to as the coefficient and 
exponent, respectively. The coefficient’s value mimics D1R. The 
exponent is negative, which means that retention starts out high 
but decays over time. Values returned by the function are 
proportions between 0 and 1. For example, a retention curve for 
a mobile game might be:

This specific function evaluates to a D1 retention of 40.0%, D7R 
of 15.12%, and D180R of 2.98%. But it can also calculate 
retention for any arbitrary day after install; e.g., D53R is 5.49%.



Fitting a retention curve r(n)=anb  to a set of DnR observations is 
an exercise in statistical regression: determine values for a and  

r(n)=anb

r(n)=0.4n-0.5



9

dependent variable and x is the independent variable. In our 
case, n (the days since install) is the independent variable. As its 
name suggests, the LINEST function – by default – fits a line 
and returns an array (two adjacent cells) containing the slope 
and y-intercept of the formula that best fits the data. To instead 
fit a power function to our data, we need to pass LINEST the 
logarithm of the array of known values. Because the logarithm 
of 0 is undefined, we only include three data points:



=LINEST(LN(B3:B5),LN(A3:A5))

Our retention curve is thus:

And that is how you use Excel to determine a formula for a 
game’s retention curve based on a small sample of DnR values. 
Congratulations – achievement unlocked!



This retention curve – based on observed D1, D3, and D7 
retention metrics only – predicts the following values for long-
tail retention:

If we enter that function into cell A7, Excel returns the exponent 
b and the natural log of the coefficient a in the cells A7 and B7, 
respectively. Cell C7 contains the function =EXP(B7) in order to 
convert the coefficient to the correct form.

r(n)=0.396n-0.472

Day n

14

30

60

90

180

360

720

Predicted Dn Retention

0.114

0.079

0.057

0.047

0.034

0.025

0.018



10

1.8% D720 retention? Really? When modeled as a power 
function, there is no terminal day beyond which every player is 
guaranteed to have churned, i.e., r(n)>0 for all n ∈ ℕ. Depending 
on your game’s live operations, elder-game mechanics, and 
content release schedule, this may or may not be a reasonable 
assumption. 




How well can we trust these estimates for D90+ retention? They 
seem optimistic, perhaps owing to the very early and limited 
number of data points. With more and later observations of 
retention, the regression analysis should become more 
accurate. Let’s consider a mature game that launched 90 days 
ago and start by capturing retention data for each user’s first 30 
days. We include only those users who had a chance to play 30 
days after install (i.e., those who installed between 90- and 31-
days prior) and simply count the number of those users who 
played n days after their install date.

Constructing a retention curve in Tableau from (more) 
historical data



Notice we do not cohort by install date – all we care about is how 
many users played exactly n days after they installed, regardless 
of each user’s specific install date.

days_since_install

0

1

2

3

4

5

6

7

...

28

29

30

players

7891

2929

2120

1769

1559

1409

1326

1283

...

658

651

621

installs

7891

7891

7891

7891

7891

7891

7891

7891

...

7891

7891

7891

retention

1.0

0.3712

0.2687

0.2242

0.1976

0.1786

0.1680

0.1626

...

0.0834

0.0825

0.0787



11

The first row (days_since_install = 0) is the total number of users 
who installed between 90- and 31-days prior. In this case, 7,891 
installs are included in our analysis; this is the size of the entire 
cohort spanning multiple install dates. To calculate retention as 
a proportion of cohort size, we divide the players by the installs. 
For example, we see that 1,283 played seven days after they 
installed: D7 retention is 1283/7891= 6.26%.



Utilizing Tableau to explore this dataset, we plot retention as a 
function of days_since_install (see the top chart).



Note: Some might object to the use of a line chart instead of a bar 
chart given that the x-axis is discrete and not continuous; i.e., we 
don’t deal in fractional days since install. My use of a continuous 
line is not meant to imply that something is happening between 
samples; it is simply an aid to help visualize a trend in the data. 
Besides, Tableau won’t overlay a trend line on a bar chart.



Now from the Analytics tab we add a Trend Line of type Power to 
fit a curve to the data (see the bottom chart).

0 2 4 6 8 10 12 14 16 18 21 23 25 27 29

0

0.5

1

0 2 4 6 8 10 12 14 16 18 21 23 25 27 29

0

0.5

1

days_since_install

days_since_install

retention

retention



12

Tableau uses the same method of least-squares as Excel to find 
values for the coefficient a and exponent b that best fits these 
observations. If we hover over the dashed line, a pop-up 
indicates the formula that Tableau has decided is the best fit for 
our data. 



To three decimal places of accuracy, we have:





This curve predicts D90R of 5.09% and D180R of 3.75%. We’ll 
take that!

r(n)=0.372n-0.442

0

0.5

1

retention=0.371848*days_since_install^-0.442077

R-Squared: 0.99592

P-value: < 0.0001



13

By now we should all be very comfortable with the idea that a 
retention curve is a model – derived from historical data – 
defined by a power function r(n)=anb . This function defines the 
probability a player has a session exactly n days after their 
install date. Therefore, when applied to a cohort of installs, the 
expected number of DAU from that cohort on day n after install 
is:

Calculating the steady-state daily active users given a retention 
formula and a constant number of daily new installs can be 
accomplished with lots of copying and pasting in a spreadsheet, 
but that approach is tedious and error prone. For example, 
assume a new game launches with a retention curve defined by  
0.4n-0.5 and 100 installs per day. After seven days, a spreadsheet 
can tell us the expected total DAU from the overlapping cohorts 
is 260. See the table, where each column represents a single 
install cohort, and the last column is the total DAU by day n after 
launch.

Predicting DAU with a retention curve

DAUn=r(n)*cohort size

n

0

1

2

3

4

5

6

7

100

40

28

23

20

18

16

15

100

40

28

23

20

18

16

100

40

28

23

20

18

100

40

28

23

20

100

40

28

23

100

40

28

100

40 100

DAU

100

140

168

191

211

229

245

260



14

By examination of this table, we notice a pattern: the DAU by day 
n is a function of only the original cohort’s retained users and 
the DAU on the prior day. For example, DAU after seven days is 
260, comprised of 15 players still remaining from the very first 
cohort, plus the 245 DAU from the prior day. This pattern is 
succinctly expressed as a recurrence relationship:

What is this sorcery! I’m not enough of a mathematician to come 
up with a closed form solution to that recurrence relation, but as 
a recovering computer scientist I know how to convert it to a 
recursive function. Here it is in R:

DAU0=100

DAUn=(r[n]*DAU0)+DAUn-1

DAU_n <- function(n)

{

  if (n == 0) {

    return (100)

  }

  return (round(100 * 0.4 * n ^ -0.5) + DAU_n(n-1))

} 


R> for (i in 0:7) print(c(i, DAU_n(n=i)))

[1]   0 100

[1]   1 140

[1]   2 168

[1]   3 191

[1]   4 211

[1]   5 229

[1]   6 245

[1]   7 260



15

Goodbye spreadsheet! It’s a straightforward exercise to 
generalize this function to work for any retention curve – a 
power function parameterized by coefficient a and exponent b – 
and any number of installs per day. First we define two 
functions: one to generate a list of a retention curve’s daily 
values, and another to generate a list of the running sum of 
these daily values. Both functions are recursive and work 
backwards from n to 0.

Here are the functions in action, revealing r(n) and ∑ r(n) for the 
first n=7 days after install for a retention curve defined by a=0.4 
and b=-0.5.

Finally, we can compute a list of expected DAU from game 
launch to n days after, assuming installs/day and a retention 
curve defined by anb:

ret_curve <- function(a, b, n)

{

  if (n <= 0) return (1)

  return(c(ret_curve(a, b, n-1), a * n^b))

}



sum_ret_curve <- function(a, b, n)

{

  if (n >= 0)

     ret_curve(a, b, n) + c(0, sum_ret_curve(a, b, n-1))

}

R> options(digits=4)

R> ret_curve(a=0.4, b=-0.5, n=7)



[1] 1.0000 0.4000 0.2828 0.2309 0.2000 0.1789 0.1633 0.1512 


R> sum_ret_curve(a=0.4, b=-0.5, n=7) 


[1] 1.000 1.400 1.683 1.914 2.114 2.293 2.456 2.607

dau <- function(installs, a, b, n)

{

  floor(installs * sum_ret_curve(a, b, n))

}

For example, the predicted DAU after 30 days for a new game 
with 500 installs per day and a retention profile of a=0.372, 
b=-0.440 is 2,510:



16

Because the retention curve asymptotically approaches 0 as 
n→∞, this DAU model grows forever. A simple fix is to define a 
terminal date after which all players are assumed churned, then 
update the function ret_curve accordingly.

R> dau(installs=500, a=0.372, b=-0.442, n=30) 


  [1]  500  686  822  937 1038 1129 1213 1292 1366 1437 1504 
1568 1630 1690 1748



 [16] 1804 1859 1912 1964 2014 2064 2112 2160 2206 2252 2297 
2341 2384 2427 2469 2510



17

The retention curve defines the probability that a user drawn at 
random plays exactly n days after their install date. As such, an 
important use of the retention curve is in predicting future 
engagement of new and existing players. In particular, the 
number of distinct dates we can expect each new user to play 
the game during their first n days after install.



A play date occurs when a user has at least one session on a 
specific date. The player duration (PD) is the count of a user’s 
distinct play dates from install. Let PDn be the average player 
duration within n days of install for a cohort of users. Then

As a cohort metric, PDn is a random variable with an expected 
value defined by the summation of the retention curve r(n). Once 
you have a function r that estimates the retention profile of your 
game, you can use this curve to predict the player duration of new 
installs, and lifetime value (LTV) if you multiply by average 
revenue per daily active user (ARPDAU). For example, what is the

Player duration as the summation of 
the retention curve

〜

average player duration during the first 30 days after install for a 
cohort whose retention curve is defined by r(n)=0.372n-0.442?



We reuse one of our R functions and determine this value is 
approximately five:

Note: In the literature you will often see reference to the “area 
under the curve”, or “the integral of the retention curve.” Strictly 
speaking this is incorrect, as the retention function is only defined 
for integer values of n. If you plug a retention curve formula into a 
symbolic integration tool, you will find the answer is typically 
inflated compared to a discrete summation.



These five play dates can occur anywhere within a user’s first 30 

PDn=∑ DiR=∑ r(i)
n n

i=0 i=0

R> sum_ret_curve(a=0.372, b=-0.442, n=30) 


[1] 1.000 1.372 1.646 1.875 2.076 2.259 2.427 2.585 2.733 
2.874 3.009 3.137 3.261 3.381 3.497 3.609 3.719 3.825 3.929

[20] 4.030 4.129 4.226 4.321 4.414 4.505 4.595 4.683 4.769 
4.855 4.939 5.021



18

and are not necessarily consecutive. Keep in mind that this is a 
statistical mean and by no means reflects the median number of 
days one can expect a random user to play during the first 30 
days after install. Most installs only play one or two days before 
churning, but this mean is skewed by a few regular users who 
like the game and play nearly every day. 



Why is PDn important? Well, if we know that ARPDAU is $1.00, 
we can assume that LTV30 for this cohort is likely to be 5.021 * 
$1.00=$5.02. In practice, when launching a new version of a 
game, extrapolating a retention curve r(n) from its early DnR 
signals and taking an average ARPDAU from existing players, 
then a reasonable estimate of LTV is given by

Rather than model the retention curve and perform a 
summation, the expected value of PDn can be modelled by fitting 
a curve directly to the running sum of observed daily retention 
values. In other words, instead of building a retention curve from 
the daily retention rates, we fit a curve to the running sum of 
these same retention rates. The resulting closed form function 

LTVn=ARPDAU*∑ r(i)
n

i=0

PD(n) can estimate expected player duration for any value of n 
without requiring the calculation of a summation.



To illustrate, refer to the following chart where both the 
retention (in orange) and sum of retention (in blue) are plotted 
on the same synchronized axes:

0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34



19

The blue curve is implemented in Tableau with a Table 
Calculation that builds a summation over the individual retention 
metrics that make up the orange curve. At day zero, we have 
100% retention and 1.00 player day. By day 30, the player days 
are 5.017. (This is the sum of the actual DnR observations, 
whereas 5.021 is the sum of the retention curve that estimates 
this data.) The dashed lines are Trend Lines of type Power, 
resulting in the following closed form estimate of PDn:

We can use this formula to extrapolate player duration to D90 
(=7.65) and D180 (=10.17). If average ARPDAU is $1.00, then 
LTV90 and LTV180 are estimated to be $7.65 and $10.17, 
respectively.

PD(n)=1.21n0.41



20

GameAnalytics offers users access to comprehensive Retention 
benchmarks, providing valuable insights into player engagement 
and retention performance across the gaming industry. These 
benchmarks serve as a reference point for developers to 
compare their game's retention metrics against industry 
standards and identify areas for improvement.



These benchmarks are derived from GameAnalytics dataset 
compiled from various games and developers worldwide, 
offering a comprehensive overview of retention trends across 
different genres, platforms, and player demographics.



One of the key features of Retention benchmarks in 
GameAnalytics is the ability to customize and filter the data 
based on specific criteria. Users can adjust filters such as genre, 
platform, region, and player demographics to refine their 
benchmark comparisons and identify relevant insights for their 
game.



Additionally, GameAnalytics provides Engagement, Monetization, 
and Advertising benchmarks.

While paying attention to your game performance cannot be 
overstated, it is equally important to understand player preferences 
and industry standards. Conveniently packaged in GameAnalytics 
Pro, our industry benchmarks can help you uncover players’ 
behavior patterns alongside the access to next-gen analytics 
solutions for your game. Learn more here.

Retention benchmarks

https://gameanalytics.com/pro


21

Retaining existing users is fundamental to the success of any 
mobile game since you can only monetize the players you have. 
Retention is measured as the proportion of a cohort that plays 
exactly n days after their install date:

…where DAU0 is the size of the cohort, and DAUn is a count of the 
daily active users from the cohort who played on the nth day after 
their install date.



The retention profile for a game is a weighted average of the 
observed DnR values for installs over a range of historical dates, 
typically calculated for days 1, 7, 30, and 90 since install.



A non-linear regression function fit to the retention profile 
succinctly captures expected player interaction for all past and 
future installs. This function is referred to as the retention 
curve. For mobile games, the retention curve is typically a 
negative-exponent power function r(n)=anb, which defines a 
proportion as a function of n, the days since install. It follows

that DnR=r(n). Each game will have its own values for a and b 
that best fit their retention profile.



Since it defines the probability that a user plays exactly n days 
after install, expected DAU by day n after game launch is 
dependent on the retention curve. The recurrence relationship 
is DAUn=(r[n]*DAU0)+DAUn-1, which can be implemented as a 
recursive function in any programming language.



Player duration (PD) is the number of distinct dates a new user 
plays over their lifetime (i.e., until churn) or within their first n 
days after install. The expected value of PD by day n is the 
summation of the retention curve from days 0 to n. This 
summation can be performed both iteratively with a 
programming language or estimated analytically by fitting a 
curve PD(n) to the running sum of r(n). LTVn is predicted by 
multiplying PD(n) by ARPDAU.

Summary

DnR=
DAUn

DAU0

〜



Portions of this paper previously appeared in the book Game 
Analytics: Retention and Monetization in Free-to-Play Games. 
Reprinted with permission of Thought Pilots.

Mobile games are big business, and the landscape is more 
competitive than ever. With an in-depth focus on the core areas 
of user retention and predicting customer lifetime value, Game 
Analytics contains the hands-on SQL queries, R scripts, 
statistical theory, full-colour Tableau visualizations, and insider 
tips and tricks you need to succeed as a data analyst, product 
manager, or user acquisition manager in free-to-play games.  

Game Analytics describes in detail how successful game studios 
make money, collect and query player data, define key 
performance indicators (KPIs), build dashboards and predictive 
models of retention and monetization, measure and predict 
return on ad spend (ROAS), and use statistics to analyze A/B 
tests designed to improve retention and monetization.



The book is available on Amazon in various countries.

Russell Ovans, Ph.D., was the Director of Analytics at East Side 
Games, developers of hit mobile games such as The Office: 
Somehow We Manage and Trailer Park Boys: Greasy Money. He is a 
computer scientist and has worked as both a software 
engineering professor and programmer for over 35 years. In 
2007, he founded Backstage Technologies, a social game studio 
that pioneered the monetization of free-to-play games on 
Facebook. Best known for its Family Feud app, Backstage was 
acquired by RealNetworks in 2010, after which Russ returned to 
teaching college, worked as an executive-in-residence at a tech 
incubator, and opened a brewery. He returned to the games 
industry in 2018 to lead analytics, growth, and

ad monetization at ESG, a

tenure during which the

company quadrupled revenue

and went public.



He welcomes your feedback:

russell.ovans@gmail.com.

About the authorAbout the book

https://www.amazon.com/dp/0986941824
https://www.amazon.com/dp/0986941824
https://www.amazon.com/dp/0986941824

