Game analytics 100:
The retention curve

by Russell Ovans, East Side Games April 2024 -

n . n . " . DAUH
DAV, = e (n) % conork size "Dn‘..%‘-’"’-'?,—;'” LTV,= Ak?bk\inz_:@ Dnl=z —= r(n)z=aw

GameAnaIyi:'lcs gameanalytics.com

Table of contents

2 Introduction Portions of this paper previously appeared in the book Game
Analytics: Retention and Monetization in Free-to-Play Games.
3 Preliminary definitions Reprinted with permission of Thought Pilots.

6 How GameAnalytics displays retention

B

7 The retention curve
8 Fitting a retention curve in Excel \
10 Constructing a retention curve in
Tableau from (more) historical data

2 =

%3
(=
=
=

= =
2
=]

13 Predicting DAU with a retention curve E

17 Player duration as the summation of
the retention curve

20 Retention benchmarks

21 Summary

GameAnalyrics

https://www.amazon.com/dp/0986941824
https://www.amazon.com/dp/0986941824

Introduction

Retaining customers is the life blood of any business, let alone a
game studio. Generating new customers is an expensive
endeavour as it requires outlays of cash on advertising. As such,
It Is generally more economical to keep the customers you have
than it Iis to buy new ones. Or, as my Uncle Bob explained to me
years ago, "Once the customer enters your business, all of your
effort shifts to selling them one thing: a return visit.”

The topic of this paper is mobile game customer retention: how
do we quantify and model the rate at which users return to play
our games? You can only monetize the users you have, so if your
game doesn’t retain its players, you will struggle to generate
revenue. Most game analysts are surely familiar with the notion
of day-n retention; i.e., the proportion of your players who return
to play exactly n days after they install and play their first
session. For example, if 100 users install your game on July 1¢,
and 20 of those players return to play on July 8™, then day 7
retention (D7R] is 0.20. In this paper, we generalize the concept
of day-n retention with a retention curve, a simple formula to
model and predict player retention for any day after install. We
describe how a retention curve is derived from a set of historical
data, plus two important applications of the curve: predicting

daily active users (DAU) from a constant number of daily installs;
and, the summation of this curve is the expected number of
distinct days a new user will play your game.

GameAnalyrics

Preliminary definitions

Data analysts tend not to think too much about individual
players. Instead, descriptive statistics are drawn from a group of
players called a cohort. A cohort is a set of players who have
something in common. Normally, this is their install date, but
additional attributes can be used to determine membership in a
cohort. For example, a cohort might consist of all the Android
players from the US who installed version 1.26.5 on July 1, 2023.
Cohorts define the players used in the calculation of averages
and other descriptive statistics that make up key performance
indicators (KPIs) such as day-n retention.

Retention is a KPI that is modified with a “days since install”
iIndex, which we denote with the variable n. You never talk about
retention without specifying a particular day after a cohort’s
install date, which is indicated by “Dn.” Dn retention (DnR]) is the
proportion - often expressed as a percentage - of a cohort that
plays exactly n days after their install date: not the day before,
nor the day after. By definition, DOR is always 1.0 since the
Install date Is equivalent to the date of a player’s first session.
D1R Is the proportion of installs who played at any time in the
calendar date immediately following their install date. The
higher your retention, the better. For the idle-genre titles

published by East Side Games, a good D1R is around 40%. For
D7R, we aim for 20%.

Dn retention as a KPl is measured at a standard set of days
since install, typically for n €{1, 7, 30, 90} . But in general, DnR
can be measured for any day since install as

DAU,
Installs

R E

where installs Is the size of the cohort, and DAU, Is a count of
the daily active users from the cohort who played on the n'" day
after their install date. Note that DAU, = installs.

For a cohort to have a value for any Dn retention metric their
Install date must be more than n days ago. For example, we
can't calculate D7R for a cohort of installs until eight days after
their install date, at which point we say the cohort and its users
are “seven days fully baked.” If a cohort is not fully baked with
respect to a KPI, the value is null.

A time series is made up of successive measurements — over

GameAnalyrics

consistent intervals - of the same variable. When charted or
graphed, time is the independent variable and occupies the x-
axis. The x-axis usually refers to a specific date when a game
was played; e.g., DAU by day. But for other time-series KPls, the
x-axis can represent a cohort install date that measures the
evolving, future behaviour of only those users who installed the
game on that date. Day-n retention is one such cohort-based
time series. If we generate a time-series graph of D30 retention,
the value on July 1%t represents the proportion of the installs
from that date who played on July 31¢t. The value on July 2"
represents the proportion who installed the game that date and
played on August 1%, and so on. (The presented data is
representative, and not from any particular game.)

9%

8%

7%

6%

5%

Jul 9

Jul 12

Jul 15

Jul 18

Jul 21

Jul 24

Jul 27

Jul 30

GameAnalyrics

Retention Is an aggregate measure applied to a group of players.

But at the individual user level, Dn retention is simply a binary
variable: the user either played on that day (indicated by the
value 1), they did not play (indicated by a 0), or if not yet fully
baked, we don’t know yet (indicated by a null value). Here is
sample retention data for some random players.

Rather than a time series of daily retention values, a retention
profile for a game as a whole is constructed by taking a
weighted average of Dn retention values over multiple install
cohorts. Given a database table similar to the one above, this is
trivial to compute with a SQL query, the result set of which might
appear as follows:

dir d7r d30r d90r

0.3712 0.1626 0.0787 0.0394

user_id install_date d1 d?7 d30 d90
858993 2017-04-23 0 1 0 0
2630131 2017-06-28 1 0 0 1
8554854 2021-11-19 0 0 0 0
226962 2017-04-20 1 1 1 0
7706121 2021-02-06 0 0 0 0
9025650 2023-09-28 0 0 0 0
3221035 2017-08-19 1 1 0 0

Typically, users are taken from a range of consecutive install
dates (as specified by a WHERE clause in the SQL) that are at
least 90 days old to ensure only fully-baked cohorts are included,
but If not, the nulls are conveniently skipped over and not
Included in the calculation of the average.

GameAnalyrics

How GameAnalytics displays retention

In GameAnalytics, retention metrics are displayed using cohorts,
which are groups of players who share common attributes, such
as install date or specific in-game actions. The retention
metrics, such as day-n retention (DnR), are calculated based on
the behavior of these cohorts over time. By default,
GameAnalytics allows users to view retention metrics via default
triggers, such as the first session after install.

GameAnalytics Pro users have additional options, including the
ability to define custom start trigger event conditions and
custom return trigger event conditions. This allows for more
granular analysis and customization of retention metrics based " enactons ©

Condition Event Weapon

on specific player actions or behaviors. _ o] [puces] | e | FETSTNRNTRL, S | ©

ltem Id

Session Start
Session End SniperRifle
Progression

Additionally, GameAnalytics provides the possibility to apply

Resource

global filters to easily alter static dimensions like country, * Tiagers ©

Type

enabling users to analyze retention metrics across different | TR SRS R | | = oo
p I_aye r se g men ts : Return = Eventconditon & & Progression ¢ = {1)Status (1) Progression 01 [1] Progression 02 X = Global

Session Start Status Progression 01 Progression 02

Session End Complete World_001 Stage_001

Pregression

By utilizing GameAnalytics, developers can gain insights into S
player retention patterns, identify areas for improvement, and
optimize their games to enhance player engagement and

satisfaction.

GameAnalyrics 4

The retention curve

By convention, the days 1, 7, 30, and 90 after install are included
In @a game’s core set of KPIs. But what about all the other days in
between or after these specific days? We could measure every
DnR from the cohort data, but is there a closed form function
that can tell us with reasonable accuracy what Dn retention is
for any day n? It turns out there is, and this function defines the
retention curve. The retention curve is a mechanism to fully
describe a historical retention profile and predict the expected
number of days each new user will engage with your game
before churning.

Retention curves are built from a retention profile of observed
Dn values. Each value Is a dot, and the retention curve connects

the dots. Here is a curve (the green line] fit to observed retention
values of 0.4, 0.23, and 0.16 at D1, D3, and D7, respectively.

Unlike the time-series graph introduced previously, the x-axis is
n, representing a discrete day since install. Note how the curve

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

®
predicts retention values well beyond the data points used In its
construction. The curves that best fit mobile game retention a
0
Day 0 DEVA DEVVAC] Day 7
GameAnalyrics 7

profiles tend to be real-valued power functions. The generic
form of a retention power curve ris a function r: N—[0, 1] of
days since install n:

r(n)=an®

where a € (0, 1], b € [-1, 0), r(0)=1.0.

The parameters a and b are referred to as the coefficient and
exponent, respectively. The coefficient’s value mimics D1R. The
exponent Is negative, which means that retention starts out high
but decays over time. Values returned by the function are
proportions between 0 and 1. For example, a retention curve for
a mobile game might be:

r(n)=0.4n"0">

This specific function evaluates to a D1 retention of 40.0%, D7R
of 15.12%, and D180R of 2.98%. But it can also calculate
retention for any arbitrary day after install; e.g., D53R is 5.49%.

Fitting a retention curve rfn)=an® to a set of DnR observations is
an exercise in statistical regression: determine values for a and

b that minimize the residual error between the observations (the
actual data) and the predictions (the values returned by the
function). We now consider two tools a data analyst might
employ in performing this regression: Excel and Tableau.

Fitting a retention curve in Excel
Assume we have the following observed retention profile for a

game In soft launch, which we have entered into an Excel
spreadsheet. The observations are for D1, D3, and D7 retention.

What is a power function rfn]=an® that best describes these data
points? In Excel, we can deploy the LINEST function to fit a line
or curve to an array of known y- and x-values, where y is the

GameAnalyrics

dependent variable and x is the independent variable. In our
case, n (the days since install] is the independent variable. As its
name suggests, the LINEST function - by default - fits a line
and returns an array (two adjacent cells) containing the slope
and y-intercept of the formula that best fits the data. To instead
fit a power function to our data, we need to pass LINEST the
logarithm of the array of known values. Because the logarithm
of 0 1s undefined, we only include three data points:

=LINEST(LN(B3:B5),LN(A3:A5))

If we enter that function into cell A7, Excel returns the exponent
b and the natural log of the coefficient a in the cells A7 and B7,
respectively. Cell C7 contains the function =EXP(B7) in order to
convert the coefficient to the correct form.

Our retention curve is thus:
rln)=0.396n70-472

And that is how you use Excel to determine a formula for a
game’s retention curve based on a small sample of DnR values.
Congratulations — achievement unlocked!

This retention curve - based on observed D1, D3, and D7
retention metrics only - predicts the following values for long-
tail retention:

Day n Predicted Dn Retention
14 0.114
30 0.079
60 0.057
90 0.047
180 0.034
360 0.025
720 0.018

GameAnalyrics

1.8% D720 retention? Really? When modeled as a power
function, there is no terminal day beyond which every player is
guaranteed to have churned, i.e., rfn)>0 for all n € N. Depending
on your game'’s live operations, elder-game mechanics, and
content release schedule, this may or may not be a reasonable
assumption.

Constructing a retention curve in Tableau from (more)
historical data

How well can we trust these estimates for D90+ retention? They
seem optimistic, perhaps owing to the very early and limited
number of data points. With more and later observations of
retention, the regression analysis should become more
accurate. Let's consider a mature game that launched 90 days
ago and start by capturing retention data for each user’s first 30
days. We include only those users who had a chance to play 30
days after install (i.e., those who installed between 90- and 31-
days prior) and simply count the number of those users who
played n days after their install date.

days_since_install players installs retention

0 7891 7891 1.0

1 2929 7891 0.3712
2 2120 7891 0.2687
3 1769 7891 0.2242
A 1559 7891 0.1976
5 1409 7891 0.1786
6 1326 7891 0.1680
7 1283 7891 0.1626
28 658 7891 0.0834
29 651 7891 0.0825
30 621 7891 0.0787

Notice we do not cohort by install date - all we care about is how
many users played exactly n days after they installed, regardless
of each user’s specific install date.

GameAnalyrics

10

The first row (days_since_install = 0] is the total number of users
who installed between 90- and 31-days prior. In this case, 7,891
Installs are included in our analysis; this is the size of the entire
cohort spanning multiple install dates. To calculate retention as
a proportion of cohort size, we divide the players by the installs.
For example, we see that 1,283 played seven days after they
installed: D7 retention is 1283/7891= 6.26%.

retention 0.5

Utilizing Tableau to explore this dataset, we plot retention as a o 2 4 6 8 10 12 14 16 18 21 28 25 27 29
function of days_since_install [see the top chart). 5 days_since_insts
X
Note: Some might object to the use of a line chart instead of a bar
chart given that the x-axis is discrete and not continuous; I.e., we
don't deal in fractional days since install. My use of a continuous
line is not meant to imply that something is happening between
samples; it is simply an aid to help visualize a trend in the data. Ml
Besides, Tableau won't overlay a trend line on a bar chart.

Now from the Analytics tab we add a Trend Line of type Power to
fit a curve to the data (see the bottom chart|.

(0] 2 4 6 8 10 12 14 16 18 21 23 25 27 29

days_since_install

GameAnalyrics 11

Tableau uses the same method of least-squares as Excel to find
values for the coefficient a and exponent b that best fits these
observations. If we hover over the dashed line, a pop-up
Indicates the formula that Tableau has decided is the best fit for

i| | retention=0.371848*days_since_install-0.442077
our d a ta ' s R-Squared: 0.99592
P-value:< 0.0001

05 |:

To three decimal places of accuracy, we have:

r(n)=0.372n0-442

This curve predicts D90R of 5.09% and D180R of 3.75%. We'll 0
take that!

GameAnalyrics

Predicting DAU with a retention curve

By now we should all be very comfortable with the idea that a
retention curve is a model - derived from historical data -
defined by a power function r(n)=an® . This function defines the
probability a player has a session exactly n days after their
Install date. Therefore, when applied to a cohort of installs, the
expected number of DAU from that cohort on day n after install
IS:

DAU . =r(n/*cohort size

Calculating the steady-state daily active users given a retention
formula and a constant number of daily new installs can be
accomplished with lots of copying and pasting in a spreadsheet,
but that approach is tedious and error prone. For example,
assume a new game launches with a retention curve defined by
0.4n°> and 100 installs per day. After seven days, a spreadsheet
can tell us the expected total DAU from the overlapping cohorts
Is 260. See the table, where each column represents a single
Install cohort, and the last column is the total DAU by day n after
launch.

DAU

100

100

40

100

140

28

40

100

168

A

28

40

100

191

20

A

28

40

100

211

18

20

A

28

40

100

229

16

18

Al

A

28

40

100

245

15

16

18

20

23

28

40

100

260

GameAnalyrics

13

By examination of this table, we notice a pattern: the DAU by day
. . . . , . DAU_n <- function(n)
nis a function of only the original cohort’s retained users and ‘
the DAU on the prior day. For example, DAU after seven days is if (n == 0) {
260, comprised of 15 players still remaining from the very first : return (109)
cohort, plus the 245 DAU from the prior day. This pattern is return (round(100 * 0.4 * n A -0.5) + DAU_n(n-1))

succinctly expressed as a recurrence relationship: y

R> for (i in 0:7) print(c(i, DAU_n(n=1)))

DAU,=100 [1] © 160

— * [1] 1 140

DAU, =(r[n/*DAU,J+DAU, , 0 1o

) . . [1] 3 191
What is this sorcery! I'm not enough of a mathematician to come [1] 4 211
up with a closed form solution to that recurrence relation, but as EH Z ;212
a recovering computer scientist | know how to convert it to a [1] 7 260

recursive function. Here itis in R:

GameAnalyrics

Goodbye spreadsheet! It's a straightforward exercise to
generalize this function to work for any retention curve - a
power function parameterized by coefficient a and exponent b -
and any number of installs per day. First we define two
functions: one to generate a list of a retention curve’s daily
values, and another to generate a list of the running sum of
these daily values. Both functions are recursive and work
backwards from n to O.

ret_curve <- function(a, b, n)

{
if (n <= 0) return (1)
return(c(ret_curve(a, b, n-1), a * n”b))

}

sum_ret_curve <- function(a, b, n)
{
if (n >= 0)
ret_curve(a, b, n) + c(0, sum_ret_curve(a, b, n-1))

Here are the functions in action, revealing r{n) and } r(n) for the

first n=7 days after install for a retention curve defined by a=0.4
and b=-0.5.

R> options(digits=4)
R> ret_curve(a=0.4, b=-0.5, n=7)

[1] 1.0000 0.4000 0.2828 0.2309 0.2000 0.1789 0.1633 0.1512
R> sum_ret_curve(a=0.4, b=-0.5, n=7)

[1] 1.000 1.400 1.683 1.914 2.114 2.293 2.456 2.607

Finally, we can compute a list of expected DAU from game
launch to n days after, assuming installs/day and a retention
curve defined by an®:

dau <- function(installs, a, b, n)

{

floor(installs * sum_ret_curve(a, b, n))

}

For example, the predicted DAU after 30 days for a new game
with 500 installs per day and a retention profile of a=0.372,
b=-0.440 is 2,510:

GameAnalyrics

R> dau(installs=500, a=0.372, b=-0.442, n=30)

[1] 500 686 822 937 1038 1129 1213 1292 1366 1437 1504
1568 1630 1690 1748

[16] 1804 1859 1912 1964 2014 2064 2112 2160 2206 2252 2297
2341 2384 2427 2469 2510

Because the retention curve asymptotically approaches 0 as
n—>oo, this DAU model grows forever. A simple fix is to define a
terminal date after which all players are assumed churned, then

update the function ret_curve accordingly.

GameAnalyrics

16

Player duration as the summation of
the retention curve

The retention curve defines the probability that a user drawn at
random plays exactly n days after their install date. As such, an
Important use of the retention curve is in predicting future
engagement of new and existing players. In particular, the
number of distinct dates we can expect each new user to play
the game during their first n days after install.

A play date occurs when a user has at least one session on a
specific date. The player duration (PD) is the count of a user’s
distinct play dates from install. Let PDn be the average player
duration within n days of install for a cohort of users. Then

PDn=Y DiR=) rli]
i=0]
As a cohort metric, PDn is a random variable with an expected

value defined by the summation of the retention curve r{n). Once
you have a function r that estimates the retention profile of your

game, you can use this curve to predict the player duration of new

installs, and lifetime value (LTV] if you multiply by average
revenue per daily active user [(ARPDAU]. For example, what is the

average player duration during the first 30 days after install for a
cohort whose retention curve is defined by r(n)=0.372n-0.442?

We reuse one of our R functions and determine this value is
approximately five:

R> sum_ret_curve(a=0.372, b=-0.442, n=30)

[1] 1.000 1.372 1.646 1.875 2.076 2.259 2.427 2.585 2.733
2.874 3.009 3.137 3.261 3.381 3.497 3.609 3.719 3.825 3.929
[20] 4.030 4.129 4.226 4.321 4.414 4.505 4.595 4.683 4.769
4.855 4.939 5.021

Note: In the literature you will often see reference to the “area
under the curve”, or “the integral of the retention curve.” Strictly
speaking this is incorrect, as the retention function is only defined
for integer values of n. If you plug a retention curve formula into a
symbolic integration tool, you will find the answer is typically
inflated compared to a discrete summation.

These five play dates can occur anywhere within a user’s first 30

GameAnalyrics

17

and are not necessarily consecutive. Keep in mind that this is a
statistical mean.and by no means reflects the median number of
days one can expect a random user to play during the first 30
days after install. Most installs only play one or two days before
churning, but this mean is skewed by a few reqgular users who
like the game and play nearly every day.

Why is PDn important? Well, if we know that ARPDAU is $1.00,
we can assume that LTV30 for this cohort is likely to be 5.021 *
$1.00=%$5.02. In practice, when launching a new version of a
game, extrapolating a retention curve rfn) from its early DnR
signals and taking an average ARPDAU from existing players,
then a reasonable estimate of LTV is given by

LTVh=ARPDAU*Y r{i)
i=0

Rather than model the retention curve and perform a
summation, the expected value of PDn can be modelled by fitting
a curve directly to the running sum of observed daily retention
values. In other words, instead of building a retention curve from
the daily retention rates, we fit a curve to the running sum of
these same retention rates. The resulting closed form function

PD(n) can estimate expected player duration for any value of n
without requiring the calculation of a summation.

To illustrate, refer to the following chart where both the
retention (in orange) and sum of retention (in blue) are plotted
on the same synchronized axes:

4.5
3.5
2.5

1.5

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

GameAnalyrics

18

The blue curve is implemented in Tableau with a Table
Calculation that builds a summation over the individual retention
metrics that make up the orange curve. At day zero, we have
100% retention and 1.00 player day. By day 30, the player days
are 5.017. (This is the sum of the actual DnR observations,
whereas 5.021 is the sum of the retention curve that estimates
this data.) The dashed lines are Trend Lines of type Power,
resulting in the following closed form estimate of PDn:

PD(n)=1.21n%4

We can use this formula to extrapolate player duration to D90
(=7.65) and D180 (=10.17). If average ARPDAU is $1.00, then
LTV90 and LTV180 are estimated to be $7.65 and $10.17,
respectively.

GameAnalyrics

19

Retention benchmarks

GameAnalytics offers users access to comprehensive Retention
benchmarks, providing valuable insights into player engagement
and retention performance across the gaming industry. These
benchmarks serve as a reference point for developers to
compare their game’s retention metrics against industry
standards and identify areas for improvement.

These benchmarks are derived from GameAnalytics dataset
compiled from various games and developers worldwide,
offering a comprehensive overview of retention trends across
different genres, platforms, and player demographics.

One of the key features of Retention benchmarks in
GameAnalytics is the ability to customize and filter the data
based on specific criteria. Users can adjust filters such as genre,
platform, region, and player demographics to refine their
benchmark comparisons and identify relevant insights for their
game.

Additionally, GameAnalytics provides Engagement, Monetization,
and Advertising benchmarks.

Retention

Get more insights with Top Quantiles, advanced segmentation and more

While paying attention to your game performance cannot be
overstated, it is equally important to understand player preferences
and industry standards. Conveniently packaged in GameAnalytics
Pro, our industry benchmarks can help you uncover players’
behavior patterns alongside the access to next-gen analytics
solutions for your game. Learn more here.

GameAnalyrics

20

https://gameanalytics.com/pro

Summary

Retaining existing users is fundamental to the success of any
mobile game since you can only monetize the players you have.
Retention Is measured as the proportion of a cohort that plays
exactly n days after their install date:

DAU,
DAL,

DnR=

...where DAU, is the size of the cohort, and DAU, is a count of the
daily active users from the cohort who played on the n'" day after
their install date.

The retention profile for a game is a weighted average of the
observed DnR values for installs over a range of historical dates,
typically calculated for days 1, 7, 30, and 90 since install.

A non-linear regression function fit to the retention profile
succinctly captures expected player interaction for all past and
future installs. This function is referred to as the retention
curve. For mobile games, the retention curve is typically a
negative-exponent power function rfn/=an®, which defines a
proportion as a function of n, the days since install. It follows

that DnR=r(n). Each game will have its own values for a and b
that best fit their retention profile.

Since it defines the probability that a user plays exactly n days
after install, expected DAU by day n after game launch is
dependent on the retention curve. The recurrence relationship
is DAU, =(r[n]*DAU,J+DAU, ,, which can be implemented as a
recursive function in any programming language.

Player duration (PD) is the number of distinct dates a new user
plays over their lifetime (i.e., until churn) or within their first n
days after install. The expected value of PD by day n is the
summation of the retention curve from days 0 to n. This
summation can be performed both iteratively with a
programming language or estimated analytically by fitting a
curve PD(n] to the running sum of r(n). LTVn is predicted by
multiplying PD(n] by ARPDAU.

GameAnalyrics

2

About the book

Portions of this paper previously appeared in the book Game
Analytics: Retention and Monetization in Free-to-Play Games.
Reprinted with permission of Thought Pilots.

Mobile games are big business, and the landscape is more
competitive than ever. With an in-depth focus on the core areas
of user retention and predicting customer lifetime value, Game
Analytics contains the hands-on SQL queries, R scripts,
statistical theory, full-colour Tableau visualizations, and insider
tips and tricks you need to succeed as a data analyst, product
manager, or user acquisition manager in free-to-play games.

Game Analytics describes in detail how successful game studios
make money, collect and query player data, define key
performance indicators (KPIs), build dashboards and predictive
models of retention and monetization, measure and predict
return on ad spend (ROAS), and use statistics to analyze A/B
tests designed to improve retention and monetization.

The book is available on Amazon in various countries.

About the author

Russell Ovans, Ph.D., was the Director of Analytics at East Side
Games, developers of hit mobile games such as The Office:
Somehow We Manage and Trailer Park Boys: Greasy Money. He is a
computer scientist and has worked as both a software
engineering professor and programmer for over 35 years. In
2007, he founded Backstage Technologies, a social game studio
that pioneered the monetization of free-to-play games on
Facebook. Best known for its Family Feud app, Backstage was
acquired by RealNetworks in 2010, after which Russ returned to
teaching college, worked as an executive-in-residence at a tech
Incubator, and opened a brewery. He returned to the games
Industry in 2018 to lead analytics, growth, and

ad monetization at ESG, a
tenure during which the
company quadrupled revenue
and went public.

He welcomes your feedback:
russell.ovansldgmail.com.

GameAnalyrics

https://www.amazon.com/dp/0986941824
https://www.amazon.com/dp/0986941824
https://www.amazon.com/dp/0986941824

